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Pinning of spiral waves by defects in cardiac muscle may cause permanent tachycardia. We numerically
study the removal of a pinned spiral by a localized stimulus at the boundary of a two-dimensional excitable
medium. It is shown that target waves may be generated by an external local force, and then the target waves
will interact with the pinned spiral. When the external force is appropriately chosen, the generated target waves
may suppress the pinned spiral, and the system is finally dominated by the target waves.
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Spiral waves are one kind of interesting patterns in excit-
able and oscillatory media, which have been observed in the
Belousov-Zhabotinsky �BZ� reaction, the catalytic surface
processes, and the heart muscle �1–4�. In some cases spiral
waves are undesirable because of their harmfulness. For in-
stance, spirals in cardiac muscle are believed to play a vital
role in life-threatening situations such as tachycardia and fi-
brillation �5�. Therefore, it is important to seek some effec-
tive methods for spiral wave control �6–13�. In this regard,
local periodic forcings may be one of the most desirable
methods �14–19� since a local control, especially at the
boundary region, is very convenient in practice and can be
easily applied in realistic systems. Nevertheless, the local
pacing method is not always successful. For example, recent
experiments explore the local low-amplitude and high-
frequency pacing as an alternative defibrillation technique
�20–23�. It is found that the pacing has only a local effect:
once the pacing is suspended, the captured local region is
reinvaded again by the surrounding electrical activity, and
the tissue remains in a state of fibrillation.

Spiral waves in cardiac muscle may be free or their cores
may be pinned to a local inhomogeneity �or an anatomical
defect� �24–27�. Free spiral waves often drift or meander,
and may thus disappear at the boundary, whereupon the heart
returns to normal. However, if there exist defective regions
in the heart, the spiral may be trapped and its core will re-
main in a confined region; thereby a so-called anatomical
reentry is created when a free rotating wave pins to an ana-
tomical defect, leading to a class of physiological arrhyth-
mias. Recently, Takagi et al. �28� showed that a pinned spiral
in cardiac tissue can be removed by a weak electric field. It is
observed that an electric field creates a pattern of the mem-
brane polarization localized around a defect, and thus unpin-
ning of spiral waves can be achieved.

Then, an interesting question is raised naturally: can
local stimulations remove a pinned spiral from the system?

Before answering this question, let us consider first the inter-
action of a wave front with a defect. As shown in computer
simulations of the Belousov-Zhabotinsky reaction �29�, un-
der appropriate conditions of the excitability, the interaction
of a wave front with a defect can lead to fragmentation of
this wave front and to form a pair of counterrotating spirals.
With a generic model of an excitable medium, Nagy-
Ungvarai et al. �30� and Pertsov et al. �31� studied the con-
ditions under which a propagating wave breaks after collid-
ing with a defect. Depending on the excitability of the
system and the characteristics of the defect, there are three
main results after the collision between a wave front and a
defect �32�:

�a� Upon circumnavigating the defect, the two broken
ends of the wave front come together and fuse; the wave
front thus recovers its previous shape and moves on.

�b� Upon detachment from the defect, the broken ends
move in opposite directions and initiate two counterrotating
spirals.

�c� After detaching from the defect, the two fragmented
wavelets gradually shrink and die off.

In this paper, we will consider a two-dimensional excit-
able system described by a modified FitzHugh-Nagumo
model with an initial spiral pinned by a defect. A local peri-
odic signal will be injected at the upper boundary of the
system. It will be shown that the local periodic signal can
generate target waves at the forcing point and the target
waves may suppress the pinned spiral. After the spiral is
removed, the whole space will be controlled by the target
waves: the target wave front breaks into two parts around the
defect; then, the two broken ends of the wave front join
together and move on. This just corresponds to the case �a�
of the collision between a wave front and a defect.

Let us demonstrate our approach with the Barkley model
�33�—i.e., a modified FitzHugh-Nagumo model. The model
describes the interaction of an activator u�t ,x ,y� with an in-
hibitor v�t ,x ,y� through the following two-dimensional
reaction-diffusion equations:

�u/�t = f�u,v� + �2u , �1a�
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�v/�t = g�u,v� . �1b�

The local reaction kinetics—i.e., the dynamics in the absence
of spatial derivatives—is described by

f�u,v� =
1

�
u�1 − u��u − �v + b�/a� ,

g�u,v� = u − v ,

where a, b, and � are three parameters. The local kinetics has
a stable but excitable fixed point at the intersection of the
nullclines f�u ,v�=0 and g�u ,v�=0. The advantage of this
model kinetics is that the excitation term can be time stepped
with little computational effort. This model permits fast cal-
culations and catches the essential features of excitable me-
dia. The simulation is performed on a square grid containing
256�256 grid points and with �x=0.390625 �i.e., an area
100�100� and with �t=0.02. Zero-flux boundary conditions
are considered for u and v at the boundaries. For all results
reported in this paper, a=0.7, b=0.1, and �=0.02 are used.
With these values of the parameters, the system described by
Eq. �1� has a solution of a rigidly rotating spiral wave with
an angular frequency �0=0.647 75.

Before we study the interaction between target waves and
a pinned spiral, we first summarize the main results of a free
spiral under the influence of a local periodic forcing. A peri-
odic signal is applied to a small fixed area at the upper
boundary of the system for the local control purpose, and this
can be realized by replacing parameter b=b0=0.1 with peri-
odic modulation b�t�=b0+bf cos��t� in n�n sites at the
boundary. Numerical simulations show that when the fre-
quency of the local force is higher than that of the spiral and
the amplitude of the local force is strong enough, target
waves will be generated. Then the generated target waves
will drive the spiral out of the boundary, and the system is
finally dominated by target waves �17�. In Fig. 1, we give the
resonant relation between the external force and target waves

in the presence of a spiral initiation. The single-frequency
resonance �the angular frequency of the generated target
waves, �=�� and double-frequency resonances �2�=�� are
observed for �� �1.2�0 ,4�0�.

Then we need to define a defect in the simulation. In
model studies, defects are often represented with Neumann
boundary conditions. But in the cardiac muscle, many het-
erogeneities of various sizes and types are present. In this
case, the simplest model of damaged regions is to set the
local kinetics less excitable than that of normal tissue. The
shape of the defect in the simulation is chosen to be a circle
with a radius R. Therefore, the defect is described by two
parameters b and R: b �r�R, inside the defect� = bin and
b �r�R, outside the defect� = b0. An unexcitable defect is
with bin=a /2, while a partially unexcitable defect is with
bin�a /2 but bigger than b0. In Fig. 2�a�, we present the
angular frequencies of a pinned spiral for different radii of
defects with bin=a /2=0.35. In Fig. 2�b�, the defects are
changed to be partially excitable with bin=0.14, and one
finds no significant change except that the angular frequency
of the spiral will be lower. It is shown that the angular fre-
quency of the pinned spiral is lower than that of the free
spiral and the angular frequency decreases when we increase
the radius of the defect. This is consistent with the prediction
by Keener and Tyson �34�.

FIG. 1. The ratio of the frequency of the output target waves and
the input pacing with n=5 and bf =0.6.

FIG. 2. The angular frequencies �s of a pinned spiral vs the
radii R of the defect. �a� bin=0.35 and �b� bin=0.14.
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Now let us consider the interaction of target waves with a
pinned spiral. In Fig. 3�a�, a pinned spiral is shown. Follow-
ing the same idea as in the control of a free spiral, our strat-
egy is to apply an external periodic signal to a fixed small
area at the boundary of the system. The controlled area is
taken to be a square with n�n sites at the upper boundary.
Generally, an external injection into a small local region can-
not essentially change the pattern of the dynamic evolution,
and the pinned spiral remains the same with slight deforma-
tion only. Under certain conditions, however, the state of the
system can be dramatically changed by the local periodic
forcing, and target waves can be generated in the small con-
trolled area.

We take the pinned spiral wave in Fig. 3�a� as the initial
state and inject a external periodic signal with n=5,
bf =0.45, and �=1.8�0 at the upper-middle boundary. In
Fig. 3, it is shown that target waves moving outward are
generated �Fig. 3�b��, and the target waves generated con-
tinuously from the controlled region can drive the spiral
waves out of the system �Fig. 3�c��. Finally, the whole space
is firmly controlled by the target waves �Fig. 3�d��. After the
external force is turned off from the state in Fig. 3�d�, no new
target waves will be generated and the existing target waves
will move out of the boundary; finally, the whole system
evolves to the spatially homogeneous steady state with
u=0, v=0.

The numerical results in Fig. 3 is interesting and the
approach is rather simple. We inject only one single signal
at the boundary, and the controlled area is not very large.
This local control method is convenient and may be useful
in terminating physiological arrhythmias with the low
amplitude pacing. We note that Fig. 3�d� just corresponds
to the case �a� of the collision between a wave front
and a defect �32�: upon circumnavigating the defect, the
two broken ends of the wave front come together and
move on.

To have deeper understanding of the phenomenon in
Fig. 3, we now discuss in detail the conditions for a success-
ful suppression of a pinned spiral by target waves.

�1� To generate target waves, the amplitude of the external
force should be larger than a threshold. Our numerical simu-
lations show that the threshold of bf is about 0.4 for n=5,
�=1.8�0, R=10�x, and bin=0.14. For a low-amplitude
force, target waves cannot be generated. In Fig. 4�a�, an ex-
ample is given for this case.

�2� The frequency of the local force should be chosen
suitably. The frequency � of the external signal needs to be
higher than a threshold �1 for generating target waves at the
boundary of the system. �1 is about 0.75�0 for n=5,
bf =0.45, R=10�x, and bin=0.14, while the frequency of the
pinned spiral �s is 0.72�0. The condition �1	�s is similar
to the case for the suppression of a free spiral �35,36�.

However, �1 is only the threshold for generating target
waves, not for suppressing the pinned spiral. There exists
another threshold �2 ��2 is about 1.36�0 for n=5,
bf =0.45, R=10�x, and bin=0.14�, below which the pinned
spiral can not be removed from the defect although target
waves can be generated. In Fig. 4�b�, such an situation is
shown. With a frequency �=1.2�0 ��1����2�, the target
wave front breaks into two parts at the defect. One broken
part and the initial spiral merge to a wave front and propa-
gate forward. The other broken part will form a new spiral
and anchor to the defect. This process repeats continuously
and the spiral remains unsuppressed. Generally, higher fre-
quency is better for unpinning a spiral.

�3� The radius R of the defect is very important in the
interaction between target waves and the pinned spiral. When
the radius R is too big, the local force may fail to unpin the
spiral �see Fig. 4�c��. In this case target waves repetitively
remove the spiral and form a new spiral, similar to the case

FIG. 3. Suppression of a pinned spiral wave by generating target
waves with an external periodic signal. �a� t=0, �b� t=20 t.u., �c�
t=60 t.u., and �d� t=120 t.u. Parameters read n=5, bf =0.45,
�=1.8�0, R=10�x, and bin=0.14.

FIG. 4. The final states �t=1500 t.u.� of unsuccessful suppres-
sions of a pinned spiral by a local external periodic signal with
n=5. �a� bf =0.35, �=1.8�0, R=10�x, and bin=0.14, �b� bf =0.45,
�=1.2�0, R=10�x, and bin=0.14 �c� bf =0.45, �=1.8�0,
R=14�x, and bin=0.14, and �d� bf =0.45, �=1.8�0, R=10�x, and
bin=0.35.
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in Fig. 4�b�. Numerical simulations show that there exists a
critical Rmax for fixed bf, �, bin, and b0, and one cannot
remove the pinned spiral with the target waves for R	Rmax.

�4� bin of the defect is also an important parameter. Gen-
erally, for a bigger bin �less excitable�, it is more difficult to
suppress a spiral with target waves. In Fig. 4�d�, this case is
shown. Target waves cannot unpin the spiral after we after
we increase bin from bin=0.14 �Fig. 3� to 0.35.

Since the maximal radius Rmax of the defect is an impor-
tant parameter for the local control of a pinned spiral, let us
study how Rmax varies when we change � and bin. We first
investigate the dependence of Rmax on the control angular
frequency �. We inject a signal of bf =0.45, and vary the
control frequency in a wide range. In Fig. 5�a�, the Rmax-�
relation is shown for an unexcitable defect of bin=0.35. One
can see that the maximal radius Rmax of the defect increases
with the angular frequency �. In Fig. 5�b�, the same relation
is shown for a subunexcitable defect of bin=0.14. Different
from Fig. 5�a�, the maximal radius Rmax of the defect does
not monotonously increase with angular frequency �. In-
stead, there are a local maximal value ��=1.5�0� and a local
minimal value ��=2�0�. The dynamic behavior become
complicated and there does not exist a clear Rmax for

�	2.4�0. For example, for �=2.5�0 �bf =0.45, bin=0.35�,
locally generated target waves can remove a pinned spiral
for R� �0,28�x� and R� �33�x ,38�x� but fail for
R� �29�x ,32�x�.

We now turn our attention to the relation between the
maximal radius Rmax and the parameter bin of the defect. We
inject an external signal of bf =0.45 for a defect with differ-
ent bin. It is found that Rmax reduces rapidly with the increas-
ing of the parameter bin at the beginning, and then it remains
practically unchanged for large bin as shown in Fig. 6. We
note that there exists a transition at bin=0.13. When bin is
close to b0—e.g., 0.1�bin
0.13—Rmax becomes indefinite;
i.e., the pinned spiral can be completely suppressed no mat-
ter how large the defect is.

In summary, with a modified FitzHugh-Nagumo model of
a two-dimensional excitable medium, we have studied the
interaction of a pinned spiral and target waves generated by
an external periodic force localized at a small boundary re-
gion. We show that under certain conditions—i.e., for a suit-
able choice of bf, �, R, and bin—target waves may be gen-
erated by the external signal, and then the target waves may
drive the pinned spiral out of the excitable medium. And the
system is finally controlled by the target waves. In particular,

FIG. 5. Dependence of the maximal radius Rmax of the defect on
the control angular frequency �. �a� bin=0.35 and �b� bin=0.14. The
other parameters are n=5 and bf =0.45.

FIG. 6. Variation of the maximal radius Rmax of the defect with
the parameter bin. �a� �=1.2�0 and �b� �=1.8�0. The other param-
eters are n=5 and bf =0.45.
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the relations among the maximal radius Rmax of the defect,
the angular frequency � of the external signal, and the pa-
rameter bin of the defect are investigated in detail. In addi-
tion, we obtain some other interesting results. For example,
under certain conditions, the target wave front may break
into two parts at the defect, one broken part and the original
spiral merge to one wave front and move on, and the other
broken part forms a new spiral and is pinned to the defect.

Since a spiral pinned to an anatomical defect may create an
anatomical reentry that leads to a class of physiological ar-
rhythmias, we expect that the results in this paper may be
helpful in the study of terminating physiological arrhythmias
by local-low-amplitude and high-frequency pacing.
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